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According to the analysis of the micro-deformation process of polymers, the author proposes a new 
concept of deformed region multiplication, from which an explicit elastic-plastic constitutive equation 
can be deduced. The characteristics of stress-strain curve in different conditions are discussed, which 
conform better the experimental results. 
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1. INTRODUCTION 

Most ductile polymers can yield under different loadjng conditions.'-* A typical 
yield behavior is shown as Figure la: First, an upper yield stress point appears, it 
is followed by a plastic unstable stage which is governed by dulde < 0, and a 
constant stress platform stage governed by dulde = 0. Last, the strain hardening 
occurs when du/de > 0. Based on the author's experiments, another yield mode 
shown as Figure l b  can be obtained. It has the upper and lower yield stresses but 
without the yield platform. Considering different materials and initial conditions, 
we can get additional yield modes. In Figure lc, there is a point of inflexion without 
a decrease in stress. In Figure Id, the yield platform exists but without the upper 
yield stress. In some cases, the actual stress-strain curve has neither an extreme 
nor an inflexion point (Figure le). Adopting the method used in metals, the stress 
which results in 0.01 - 0.03 residual strain is regarded as the yield stress. 

a bc C d e 

FIGURE 1 Several typical yield modes. 
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Researchers have proposed many theories to explain the yield phenomena. Con- 
sider suggested that the yield is a geometrical unstable effect based on the necking- 
down of the specimen. This theory can not explain the yield without necking-down 
under p r e ~ s u r e . ~ - ~  Many people think the intristic mechanism of yield is the local 
increase of temperature in the deformation process. The platform of yield shows 
an equilibrium between the created heat and the transmitted heat in the region of 
the specimen.'-' But the temperature may not be the most essential reason, because 
a very slow loading under constant temperature can also cause an obvious upper 
yield point.8 

One of the micro-yield theories suggests that the external load causes molecules 
to flow in one direction, the yield stress is the stress at which the strain rate is 
equal to the plastic strain rate kp governed by the Erying's equation. On the basis 
of this theory, many models and methods were developed and the following formula 
can be deduced' : 

where, us is the yield stress, E, is the corresponding strain rate, AH and V are the 
activation energy and activated volume, T is the absolute temperature and R is a 
physical constant. The formula shows that there is a linear relationship between 
o,JT and Ink,. 

Based on the concrete mechanism of flow, a model of polymer chain rotation 
conformation was p r ~ p o s e d . ~ ~ ' ~  It suggests that the yield flow of molecule is caused 
by the rotational change of polymer chain from the lower energy state of anti-form 
to the higher energy cis-form state. When the proportion of the cis-molecule is 
sufficiently high, the macro-yield occurs. 

He suggested that the 
resistance of retarding the formation of double twisted chain is the elastic interaction 
between the chains. The yield process needs not only the formation of the double 
twisted chain but also the coordination of the neighbour chains. From this model, 
the relation between the yield shear stress T, and strain rate qS can be obtained: 

Argon advanced another model of molecular 

(2) 
0.102G + 16 x 0.102KT q, 

7, = ~ In 7 
1 - v  3.rro2a3 Y O  

where, G is the shear modulus, v is the poisson's ratio, u is the radius of the 
molecule chain, o is rotation angle of the segment of the Chain and K is a physical 
constant. 

Bowden analysed the yield sliding process of the non-crystalline polymers from 
the analogy of expanding dislocation The yield will occur when the radius 
of the loop reaches a critical value and the formation energy of the loop decreases 
with increasing stress. 

The free volume theory suggested that material may expand under stress field, 
which enhances the possibility of segmental movement of the chain which results 
in yield. Some other theories indicated that many yield processes are caused by 
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the micro-voids and micro-crack when the material expands.I4- l6 Many experiments 
show that in the yield process, the molecular chain fracture, void formation, mo- 
lecular orientation and molecule chain sliding occur simultaneously. The more 
brittle a material is, the larger is the effect of the cracks and voids, and the tougher 
a material is, the larger is the contribution of molecular orientation and sliding. 

The present author suggests that the yield mechanism of polymers does not 
depend only on the micro-structure reorganization revolution, but also on the 
process dynamics of the deformation region in the entire specimen. Thus, a yield 
model based the multiplication of deformed region will be proposed and the cor- 
responding elastic-plastic constitutive equation will be deduced. 

2. PHYSICAL MECHANISM OF DEFORMED REGION’S MULTIPLICATION 

Deformed region multiplication means that the deformation in a small region of 
the specimen can cause the deformation of its neighbour regions, which will make 
the farther regions deformed. In this concept, the deformation can expand to the 
whole specimen. 

At the beginning of loading, the polymer is in the elastic state. Then, due to the 
unavoidable geometric and structural non-uniformities, the plastic deformation 
occurs only in some stress concentration regions. The geometric non-uniformity is 
created during the preparation of the specimen, while the defects distributed at 
random will cause the structural non-uniformity. With the increase of stress, the 
plastic deformation in these regions causes new stress concentrations, which will 
make of the plastic deformation autocatalytically. On the molecular scale, the 
material is also inhomogeneous. The weak regions may contain a large amount of 
chain ends, untwisted section between the chains, and the sections-chains which 
are vertical to the stress direction. Especially, when the chain is fractured, this 
position will become a new weak region.” Under loading, these regions will be 
damaged first and formed micro cracks or voids, which will weaken their adjacent 
regions. This mechanism of weak region multiplication is common in brittle ma- 
terials. 

The thermal effect in the deformation process will now be considered. When the 
strain rate is over 5 x lop3 S- ’ ,  the temperature increase can not be neglected.’ 
The heat may come from the work of the external forces, the decrease of entropy 
due to the molecule chain orientation and the internal energy release. The infro- 
red photography shows that the temperature in the shoulder region of the specimen 
is the highest (Figure 2). It means that there is a great quantity of heat in front of 
the plastic deformed region, and the adjacent elastic regions can be softened and 
create more heat resulting from plastic deformation, so the additional elastic regions 
will be softened until the plastic deformation expands to the whole specimen. 

Another possible effect is that the radicals caused by the fracture of stressed 
molecules can become the catalyst for the fracture of the adjacent molecules.18 
This kind of failure can also be regarded as one of the micro-mechanisms of 
deformed region multiplication. 

On the basis of above analysis, the author proposes that the plastic deformation 
of polymers begins in some stress concentration positions and expands gradually 
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FIGURE 2 The distribution of temperature in a specimen. 

by a mode of plastically deformed region multiplication. The dynamic character- 
istics of this process may result in the yield and cold tension. Hearle has ind i~a ted '~  
that the yield may concentrate on the shoulder regions or other local regions. The 
decrease of the yield stress may be caused by the changes of the micro-structure. 
That is to say, once the structure starts to  fail, the deformation of adjacent structure 
elements may be easier, because the plastic deformation causes the material to 
heat. 

3. FORMULATION OF THE CONSTITUTIVE EQUATION 

The following assumptions were applied to the deformed region's multiplication 

1) The multiplication rate is defined as the increment per unit volume of deformed 
region in unit time. It is a parameter related with the type of material. 

2) The multiplication space (specimen's volume) is limited, the material is iso- 
tropic and the dimensions of the specimen in three directions are of the same order. 

3) The time for keeping the deformed region's multiplication is so long that the 
adjacent region can fully deform. 

4) The time lag of the multiplication process is negligible. This is based on the 
hypothesis that the velocity of heat flow is fast. 

5) The induction period of multiplication (from initial loading to the beginning 
of plastic deformation in some regions) is almost zero. 

6) The multiplications in different deformed regions are independent of each 
other. 

7) The multiplication damping and driving force are all constants during the 
whole deformation process. 

8) The plastic deformation starts only at one position with highest stress con- 
centration. 

On the basis of the above assumptions, the multiplication rate doldt of the volume 
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of the plastic deformed region is a function of the volume w. By Taylor’s series, 
it can be expressed as: 

dw 
- = F ( w )  = c,, + c,o + c * w 2  + . . 
dt (3) 

when w = 0, dwldt = 0 ,  therefore C, = 0. With t increasing, dwldt increases from 
zero and reaches its maximum at a certain time, then decreases to zero due to the 
limitation of the multiplication space. So, there are two real roots for F ( w ) .  By 
selecting three terms in the right side of (3) we obtain: 

dw 
- = c, + c,w + C,w’ = bw 
dt 

The integration leads to 

W 
1 + eUpb* 

w =  

(4) 

when W = w, dwldt = 0 and W is the whole volume of the specimen. w, = w1,=, 
= Wl(1 + e‘) is the volume of deformed region at initial time, and 

a = In (i - 1) 

is a parameter related with wo. Here, C = w,/W is the initial volume ratio. 
From (4), we get: 

Here, B is the actual multiplication rate for the above conditions. It will decrease 
when w increases, which shows the limitation of the multiplication space. If the 
space is infinite, BI,, = b. Therefore, b is a multiplication rate regardless of the 
space limitation. We assume it is a material constant. 

In a real case, the effect of external stress u must also be considered. Under 
uniaxial loading, the larger the stress, the easier the multiplication. From this it 
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follows that u is proportional to w, or proportional to the multiplication rate. The 
calculation shows that the second assumption is more reasonable. Therefore, 

dw 
dt 

And 

Here CY and p are constants determined by experiments. 
The displacement H of the crosshead of the tension machine is the sum of the 

elastic deformation P of the tension machine and the plastic deformation Q of the 
specimen: 

0, 

K 
H = Vt = P + Q = - + Q 

Here, V is the velocity of the crosshead, t is the time of deformation, K is the 
elastic constant of the tension machine and S is the cross area of the specimen. 

For simplification, we assume that the contribution 9 of unit volume of the 
deformed region to the macro-extension of the specimen is a material constraint. 
Therefore, 

where E is the elastic modulus, 1 is the length of the elastic region along the tension 
direction, 1 can be expressed as 

w - 0  / = - - - -  
S 

From (9)-(12) it follows 

W{$ + exp[a - b(au + P)r]} _ _  US ES v r = - +  
K 1 + exp[a - b(au + p ) t J  

It is easy to rewrite the above relation between u and t into stress-strain relationship. 
In fact, under constant velocity of loading, the two types of relation curves have 
similar shape. 
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If the elastic deformations of the tension machine and the specimen are neglected, 
we can get from (13) the following formula: 

a - pbt - ln(W$ - Vt) ln(Vt) 
u =  +-  

abt abt 

4. DISCUSSION ON THE m-t CURVE 

From (14), we can obtain: 

_ -  
w* - vt du - 1 [In (z - 1) + ln 

dt abt2 

By selecting daldt = 0, we obtain 

(16) e - x  = a - 1 - x 

where x = ln(W+/(Vt) - 1). If y,  = e-", y ,  = a - 1 - x ,  the relation between 
y ,  and y, has three possibilities in Descartes coordinates: 

1) When a < 2, the two curves of y ,  and y, do not intersect (Figure 3a), so there 
is not solution for eqn. (16). From (6), C = w,,/W > 1/(1 + e.) = 11.9%, i.e. 
when initial volume ratio is bigger than 12%, there are no extremes (or upper and 
lower yield stresses) in the (T - t curve described by eqn. (14). 

From (15) and d2a/dt2 = 0, an equation of variable t can be obtained: 

w* - a ]  (17) 
= 2 [In (7 - 1) + w* - vt 

W*(2Vt - W*) 
(W* - Vt)' 

According to these calculations, there is also no solution for (17) when a < 2. That 
means, the curve has no inflection point. So the constitutive relation from (14) 
describes the yield mode in Figure le. 

2) When a = 2, there is an intersection point between y,  and y, (Figure 3b). 
The real root of eqn. (16) is x = 0, when t = W$/(2V). From (17), this point 
corresponds to the inflection point of the u - t curve, but not an extreme. Con- 

$Y:$c$, (0.1) (091) 

Y Z  
I 

x x x, I 

n. b. C. 

FIGURE 3 Three possible relations between the curves of y ,  and y 2 .  
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sequently , when the initial volume ratio approaches 12%, the constitutive eqn. 
(14) gives the yield mode shown in Figure lc. 

3) If a > 2, there are two intersection points between y ,  and y ,  (Figure 3c). 
When x 4 xlr  y1  > y,, i.e. e x  > a - 1 - x ;  duldt > 0. This shows that before the 
tension time t,, corresponding to the first intersection point, u - t curve is upward. 
When x ,  < x < x2,  y ,  < y , ;  duldt  < 0,  this shows the stress will decrease. When 
x2 < x ,  the tension time is larger than t, corresponding to the second intersection 
point and daldt > 0. The curve will go up again. So, t, and t, are the time for 
upper and lower yield stresses, respectively. The constitutive eqn. (14) describes 
the yield mode shown in Figure lb .  

According to the preceding analysis, we can see that a well machined specimen 
with uniform micro-structure has a small region of plastic deformation at initial 
time, therefore, a is small and an obvious yield and plastic unstability will exist. If 
the fabrication is crude, or  the micro-structure is non-homogeneous, there may be 
no upper and lower yield stresses. This was verified by experiments. 

On the other hand, the configuration and size of the specimen can also affect 
the stress-strain curve. If the size in one direction is much smaller than in the other 
two directions, the specimen can be considered as a two dimensional plate. When 
the plate length and width are of the same order, it may form a deformed region 
in two dimensions. We assume, 

Here, 0 is the shape factor of the region. If the region extends circularly, 8 = 
2 f i .  If it is a rectangle with the ratio k between its length and width, 0 = 2(k1l2 
+ k We assumed 0 as a constant during the deformation process. From (18), 
we get 

2 c’ec”‘ - 
, = w (  1 C‘ft + l  1) 

where C‘ = (1 + C1/z)l(l - C1/2), C = o,/W, C‘ = be. Assuming b = b,(cxa 
+ p) and neglecting the elastic deformation, we obtain 

@At + lnc’ 
(J= - + In D 

axt 

where A = boo, D = (1 + n’”)l(l - n1I2), n = Vt/+W. 
If the size in tensile direction is much larger than those in other two directions, 

the initial three dimensional extension of deformed region will soon transform into 
one dimensional multiplication along the tensile direction. The deformation band 
will sweep the entire specimen shown in Figure 4. Let the length of the specimen 
be L, cross area be S, the length of deformed region be 1. Because only the front 
of the deformed region can make its neighbor region deform, the multiplication 
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FIGURE 4 The extension of deformation band 

velocity dwldt = Sdl/dt will not be proportional to the whole volume of the deformed 
region. It should be assumed that the larger the external stress, the faster the 
increasing of the length 1 is. Consequently, 

d o  dl _ -  - S - = b (  n MT + P) 
dt dt 

Regarding dlldt > 0 and 1 = 0 as the initial conditions after the transformation 
from three dimensional multiplication to one dimensional extension, it follows that 

This shows that when a one dimensional multiplication occurs, the stress will be 
constant. The corresponding stress-strain curve has an upper yield point and a yield 
platform, then, the stress will go up again after the deformation band extends to 
the whole specimen. So, most of specimens under uniaxial loading can have the 
yield mode shown in Figure la .  

If the fabrication is crude or the micro-structure is non-uniform, the curve only 
has a platform without upper yield stress point. This mode is shown in Figure Id.  

It must be pointed out that the yield platform can be regarded as the equilibrium 
between the strain softening and the orientational intensification because + has a 
limited value. 

For comparing with the experiments, we consider the strain rate: 

de 1 dL  V 
dt L dt L 6 = - = - . - = -  

SO 

v = LE 

From eqn. (14), we obtain 

(25) 
a - pbts ln(W+ - Lt,E) ln(Lt,6) 

abt, abt, abt, 
+- - us = 

where a,7 is the yield stress, t, is the occurring time of a,. If E is not too large and 
t, is sufficiently small, there is a linear relation between a, and In E, which is 
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u .  5 L L - A  
10’‘ l o b  1 0 ‘  10.’ 10.’ lo-‘ 

h i ( S - I )  

FIGURE 5 The relationship of o,/T - hi. 

FIGURE 6 The relationship of u, - hi,. 

consistent with the microscopic yield models represented by formulas (1) and (2), 
and is consistent with the experimental results” shown in Figure 5. 

If E is large, we will find that the relation of us - In6 is not completely linear. 
With the increasing of E, us is larger than that of the value calculated from linear 
relation. Figure 6 is the experimental results of Reference 21, which can be rep- 
resented by eqn. (25). 

In the above constitutive equations the effect of temperature is not considered. 
It is expected that it will affect the multiplication rate. 
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5. CONCLUSIONS 

1) The plastic deformation in polymer starts at a small volume element. By the 
mode of multiplication, the deformed region will extend to the whole specimen. 
The front of the region forms the deformation band. 

2) The phenomena of yield and cold flow in polymers are related with the 
multiplication process of the deformed region. 

3) Under some conditions, a simple constitutive relationship can be deduced 
based on the multiplication process. Some quantitative descriptions on several 
typical yield modes can be derived from different initial state, size and shape of 
the specimen. 
4) The relation between yield stress and strain rate based on this model is 

consistent with the microscopic yield theories and the experimental results reported 
in literature. 
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